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Abstract—For an overhead conductor, meteorological 

correlations exist among the meteorological elements that 

dominantly determine its thermal rating, and temporal 

correlations exist among the thermal ratings in sequential time 

periods. It is necessary to exploit these correlations to improve 

the performance of the probabilistic prediction of thermal 

ratings. To this end, a copula-based method of joint probability 

density prediction for multiperiod thermal ratings 

(JPDP-MPTR) is presented in this paper. In this method, the 

probability density functions (PDFs) of the thermal ratings for 

every 15 minutes over a 1-hour horizon are first predicted 

individually, considering the correlations among meteorological 

elements. Then, the joint probability density function (JPDF) of 

the multiperiod thermal ratings is further formulated based on 

copula theory. Finally, the probability distributions of the 

thermal ratings in the predicted time periods are estimated via 

joint sampling based on the JPDF. Numerical simulations based 

on actual meteorological data collected around an overhead 

conductor show that the proposed method can significantly 

improve prediction results through the integration of 

meteorological and temporal correlations into the probabilistic 

prediction of the thermal rating. 

 
  Index Terms—Copula theory, meteorological elements, overhead 

conductor, probabilistic prediction, thermal rating 

I. INTRODUCTION 

At present, fossil energy shortages and severe environmental 

pollution are promoting the rapid expansion of renewable energy 

power generation, which is aggravating the load on power grids [1], 

[2]. An insufficient transfer capability in power grids has become 

one of the most important factors hindering the economical 

operation of power systems and the accommodation of renewable 

energy [3]. In this situation, system operators are required to make 

full use of the transmission capacity of existing transmission 

components to alleviate the shortage of transfer capability. 

For thermally limited overhead conductors, to ensure safe 

operation, their thermal ratings are traditionally calculated under 

suitably conservative weather assumptions that either are fixed or 

vary seasonally [4] (known as static thermal ratings (STRs)). 

Although the STR is convenient to use, it is highly conservative in 
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most instances [4], [5]. To capture the actual transfer capability of 

overhead conductors, the dynamic thermal rating (DTR) technique 

was proposed in 1977 [6]. The DTR of an overhead conductor is 

calculated based on meteorological conditions measured in real time 

around the conductor [7]. Thus, the DTR of a conductor is varying 

in time and is significantly higher than the STR most of the time [8], 

[9]. Field studies have shown that the application of the DTR 

technique has played an important role in improving renewable 

power integration [10] and saving investment in power grid 

construction [11], [12]. Currently, the DTR technique has been 

developed to enable comprehensive monitoring of the temperature, 

mechanical tension, sag and meteorological environment of an 

overhead conductor. By taking advantage of sufficient measured 

data, the operating state, thermal model parameters and thermal 

rating of an overhead conductor can be estimated more accurately 

[13]. 

To enable the integration of the DTR into power system control 

decisions and guide operators to fully exploit the transfer 

capabilities of transmission lines, studies on thermal rating 

prediction have been conducted based on the DTR technique. In 

[14], the principal component regression method was used to predict 

steady-state conductor temperatures over a 12-hour horizon based 

on numerical weather predictions (NWPs). Then, the thermal ratings 

over the prediction time horizon could be indirectly calculated by 

estimating the allowable current increment based on the predicted 

conductor temperatures. The authors of [15] used an integrated 

factorized Ornstein-Uhlenbeck model to predict thermal ratings 

over a 24-hour horizon. In [16], NWPs were coupled with a 

computational fluid dynamics model to predict the wind conditions 

around a conductor. Then, the thermal ratings over an 18-hour 

horizon were calculated based on the predicted wind conditions 

combined with the air temperature and solar radiation data provided 

by the NWPs. These previous studies focused on point prediction of 

the thermal rating. However, the thermal rating of an overhead 

conductor is challenging to be predicted accurately due to the strong 

volatility of meteorological conditions. Thus, it is necessary to 

develop probabilistic prediction methods to reflect the uncertainty 

of the thermal rating predictions. To this end, the authors of [17] 

used the expectation-maximization algorithm to predict the 

probability density functions (PDFs) of day-ahead meteorological 

elements with 15-minute time steps based on NWPs and historical 

meteorological data in the vicinity of a conductor. Then, the PDFs of 

the day-ahead thermal ratings were calculated using meteorological 

data sampled from the predicted PDFs of the meteorological 

elements. In [18], the probability distributions of meteorological 

elements over a half-hour horizon were predicted using a 

conditional heteroscedastic auto-regressive model based on 

historical meteorological data in the vicinity of a conductor. Then, 

the kernel density estimation method was used to estimate the 

probability distributions of the thermal ratings based on thermal 

rating samples generated in accordance with the predicted 

probability distributions of the meteorological elements. [19] and 
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[20] provided the prediction intervals of day-ahead thermal ratings 

using machine learning methods based on NWPs and historical 

meteorological data in the vicinity of a conductor. In [21], the 

quantile regression (QR) method was used to predict the quantiles of 

day-ahead thermal ratings. Then, a risk-averse selection method for 

the optimal quantile was developed. It should be noted that one 

prerequisite in these previous studies was that the critical span of the 

overhead line was first identified using a corresponding technique 

[22], [23], and the DTR technique was then applied to this critical 

span. 

Previous studies on the probabilistic prediction of thermal ratings 

are capable of providing prediction intervals and probability 

distributions of the thermal ratings in future time periods. However, 

these probabilistic predictions were conducted individually for each 

time period, without considering the correlations among multiperiod 

thermal ratings; that is, in these studies, series of single-period 

probability predictions were actually conducted over the prediction 

horizon. This may lead to overly wide prediction interval of the 

thermal rating, which is not consistent with the actual variation 

feature of the thermal rating. Therefore, to improve the performance 

of probabilistic prediction using the correlations that exist among 

multiperiod thermal ratings, a copula-based method of joint 

probability density prediction for multiperiod thermal ratings 

(JPDP-MPTR) is presented in this paper. The main contributions of 

this paper are as follows: 

1) Based on meteorological data measured around an overhead 

conductor, the correlations among the four meteorological elements 

and the correlations among multiperiod thermal ratings are analyzed 

and revealed. 

2) A copula-based JPDP-MPTR method is proposed. In this 

method, the PDFs of the thermal ratings in future time periods are 

first predicted via a series of single-period probabilistic predictions. 

A probabilistic prediction method considering the correlations 

among the four meteorological elements is proposed for these 

single-period predictions. Subsequently, the joint probability 

density function (JPDF) of the multiperiod thermal ratings is 

formulated using a selected copula model. 

The remainder of this paper is organized as follows. Section II 

introduces the method of calculating the thermal rating of an 

overhead conductor. Section III analyzes the correlations among 

meteorological elements and the correlations among multiperiod 

thermal ratings based on meteorological data measured around an 

overhead conductor. Section IV presents the proposed JPDP-MPTR 

method. Section V analyzes the prediction results of the proposed 

method, and conclusions are drawn in Section VI. 

II. THERMAL RATING CALCULATION 

According to the relevant IEEE standard [24], the steady-state heat 

balance equation for an overhead conductor can be expressed as 

     j avg s c s r sq T q q T q T   ,                     (1) 

where Tavg is the average conductor temperature (℃), Ts is the 

conductor surface temperature (℃), qj is the Joule heat produced by 

the current per unit length of the conductor (W/m), qs is the solar heat 

gain (W/m), qc is the heat loss caused by convection (W/m), and qr is 

the heat loss caused by the heat radiation (W/m). The calculation 

formulas for the heat gain and heat loss terms in (1) are given as 

follows: 
2( ) ( )j avg avgq T I R T ,                             (2) 
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In (2), I is the current of the conductor (A), and R(Tavg) is the 

resistance per unit length of the conductor (Ω/m) at temperature Tavg. 

Equation (3) characterizes the resistance-temperature effect of the 

conductor, where [Tlow, Thigh] is the effective range of the linear 

resistance-temperature relationship; Tlow=25°C and Thigh=75°C are 

used in this paper. In (4), αs is the solar absorptivity of the conductor, 

Qse is the solar radiation per unit square area on the ground after 

elevation correction (W/m
2
), θ is the angle of incidence of the sun’s 

rays (°), and A’ is the projection area per unit length of the conductor 

(m
2
/m). In (5), D is the diameter of the conductor (m), ρf is the air 

density (kg/m
3
), μf is the air viscosity (kg/m-s), Vw is the wind speed 

(m/s), and kangle is a wind direction factor that is related to the angle 

between the wind direction and the conductor axis (φ). qc1 and qc2 are 

used to calculate the forced convection heat loss rates caused by a low 

wind speed and a high wind speed, respectively. Under a given wind 

speed, it is recommended to use the greater of qc1 and qc2. qc3 is used to 

calculate the natural convective heat loss rates under zero wind speed. 

IEEE Standard 738 recommends that the larger value between the 

forced and natural convection heat loss rates should be used at low 

wind speeds. In (6), ε is the heat radiation coefficient of the conductor, 

and Ta is the ambient temperature around the conductor (°C). 

As seen from (2)-(6), once the location and type of an overhead 

conductor have been determined, the thermal rating of the conductor 

mainly depends on four meteorological elements around the 

conductor: the ambient temperature (Ta), wind speed (Vw), wind 

direction (φ), and solar radiation (Qse). Based on the given values of 

these meteorological elements, the thermal rating of an overhead 

conductor can be calculated as 

   

 
max ma

max

max

xc r sT Tq q q
I

R T

 


,                      (7) 

where Tmax is the maximum permissible temperature of the 

conductor and Imax is the thermal rating of the conductor; Tavg and Ts 

are assumed to be equal to Tmax in the calculation of Imax. 

For an operational overhead conductor, correlations exist among 

the four meteorological elements in its vicinity, referred to as 

meteorological correlations. For example, a positive correlation 

exists between solar radiation and air temperature. In addition, for 

each meteorological element, autocorrelation also exists within its 

time series, introducing temporal correlations among the 

multiperiod thermal ratings of the overhead conductor. In this paper, 

an attempt is made to integrate these meteorological and temporal 

correlations into the probabilistic prediction of the thermal rating to 

improve the predictive performance. 

III. DATA ANALYSIS 

In this section, historical data on the four meteorological elements 

around an overhead conductor are used to analyze the 

meteorological and temporal correlations. 

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 28,2020 at 05:07:31 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3031833, IEEE
Transactions on Power Delivery

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3 

We collected meteorological data around a 220 kV overhead 

conductor ACSR300/40 (the cross-sectional areas of the aluminum 

part and the steel core of the ACSR are 300 mm
2
 and 40 mm

2
, 

respectively) in 2018 for 8760 hours in total, with a 15-minute time 

resolution. Scatterplots of pairwise combinations of the ambient 

temperature, wind speed, and solar radiation are shown in Fig. 1. 

Rose diagrams of the wind direction and the other meteorological 

elements are shown in Fig. 2. 

 
Fig. 1 Scatterplots of pairwise combinations of the ambient temperature, wind speed, 

and solar radiation. 
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Fig. 2 Rose diagrams of the wind direction and the other meteorological elements. 

According to the historical meteorological data, the correlation 

coefficients among the four meteorological elements are as shown 

in Table I. 
TABLE I 

CORRELATION COEFFICIENTS AMONG THE FOUR METEOROLOGICAL ELEMENTS 

Number Meteorological elements Correlation coefficient 

1 Qse — Ta 0.72 

2 Qse — Vw 0.56 

3 Ta — Vw 0.52 

4 Vw — φ 0.36* 

5 Ta — φ 0.32* 

6 Qse — φ 0.28* 

* Since the wind direction is a circular variable, correlation coefficients No. 4-No. 6 
were calculated using the linear-circular rank correlation coefficient calculation 

method presented in [25]. 
As shown in Table I, the correlation coefficients are all greater 

than 0.1, indicating the existence of correlations among the four 

meteorological elements [26], [27]. In particular, correlation 

coefficients No. 1-No. 3 are greater than 0.5, indicating relatively 

strong correlations among the solar radiation, air temperature and 

wind speed, whereas the correlations between the wind direction 

and the other meteorological elements are relatively small. 

The historical thermal ratings of the conductor can be calculated 

based on these meteorological data using Eq. (7). The 

autocorrelation functions (ACFs) of the thermal ratings under 

different retardation time windows (0-48 hours with 15-minute time 

steps) are shown in Fig. 3. 

 
Fig. 3 ACFs under different retardation time windows. 

As shown in Fig. 3, the ACFs of the thermal ratings under a 

retardation time window of up to 3 hours are greater than 0.5, 

indicating that the correlations among the multiperiod thermal 

ratings over a 3-hour horizon are relatively strong. In addition, the 

variation in the ACFs shows a diurnal periodicity. 

Based on the above analysis, we set the length of the prediction 

time horizon to 1 hour. Then, 2-hour historical meteorological data 

were used to produce predictions of the thermal ratings with 

15-minute time steps. A scatterplot matrix of the thermal ratings is 

presented in Fig. 4 to further illustrate the correlations among the 

thermal ratings in the four time periods over 1 hour. 

 
Fig. 4 Scatterplot matrix of thermal ratings. 

In Fig. 4, TR1, TR2, TR3 and TR4 represent the thermal ratings in 

four time periods over 1 hour with 15-minute time steps. It can be 

seen from Fig. 4 that the distributions of the scattered points are 

almost concentrated into straight lines. This observation indicates 

that 1) strong positive correlations exist among TR1, TR2, TR3 and 

TR4 and 2) the distributions of the variations of thermal ratings 

among the different time periods are also highly concentrated. Fig. 5 

shows the frequency distributions of the thermal rating variations 

over different time spans (15 minutes, 30 minutes, 45 minutes and 1 

hour). Table II shows the 95% confidence intervals of the 

distributions of the thermal rating variations over different time 

spans. 

 
Fig. 5 Frequency distributions of the thermal rating variations over different time 

spans. 

TABLE II 
95% CONFIDENCE INTERVALS OF THE DISTRIBUTIONS OF THE THERMAL RATING 

VARIATIONS OVER DIFFERENT TIME SPANS 

 Time span 

15 min 30 min 45 min 1 hour 

95% confidence 

interval 
[-65A, 65A] [-100A, 100A] [-130A, 130A] [-155A, 155A] 

The above data analysis reveals the existence of correlations 

among the meteorological elements and among multiperiod thermal 

ratings. Perceptible correlations exist among some of the 
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meteorological elements. In addition, there are noticeable temporal 

correlations among the thermal ratings in the short term (1-3 hours). 

IV. COPULA-BASED JPDP-MPTR METHOD 

To take advantage of meteorological and temporal correlations to 

improve the performance of probabilistic prediction, a copula-based 

JPDP-MPTR method is presented in this section. 

In the developed method, a series of single-period probabilistic 

predictions are first carried out to predict the PDFs of the thermal 

ratings in future time periods over the prediction horizon. For each 

single-period prediction, a copula model is selected to generate the 

JPDF of the four meteorological elements to consider the 

meteorological correlations. Afterward, another copula model is 

selected to generate the JPDF of the multiperiod thermal ratings 

over the prediction horizon. The steps of the prediction process are 

presented in Subsection A. The technical details of the method for 

single-period probabilistic prediction are presented in Subsection B. 

Subsection C presents the JPDF prediction method for the 

multiperiod thermal ratings. 

A. Prediction Process 

A flowchart of the JPDP-MPTR method is shown in Fig. 6. 

START

Use the QR method to predict the PDFs of the meteorological 
elements in the predicted time periods

Collect historical data on the four meteorological elements

Use a selected copula model to generate the JPDFs of the 
meteorological elements in the predicted time periods

Estimate the PDFs of  the thermal ratings in the predicted time 
periods 

Use a selected copula model to generate the JPDF of the 
multiperiod thermal ratings
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Fig. 6 Flowchart of the prediction process. 
The prediction process is explained as follows: 

1) In Step ①, meteorological data are collected around the target 

overhead conductor in preparation for prediction. 

2) In Step ②, the QR method is used to predict the PDFs of the 

four meteorological elements in future time periods over the 

prediction horizon. The parameters of the QR models are trained 

using the collected meteorological data. Then, the quantiles of the 

four meteorological elements in the time periods of interest are 

predicted using the trained QR models. Subsequently, the PDFs of 

the meteorological elements in the predicted time periods over the 

prediction horizon can be obtained. 

3) In Step ③, a copula model is selected to formulate the JPDFs 

of the four meteorological elements in the predicted time periods. 

Based on the formulated JPDFs, the four meteorological elements in 

each predicted time period can be jointly sampled. Then, the thermal 

ratings under the sampled groups of meteorological data (where one 

group consists of the values of the four meteorological elements) are 

calculated using Eq. (7). Subsequently, the PDF of the thermal 

rating in each predicted time period is estimated (see Step ④). By 

this means, the meteorological correlations are integrated into the 

single-period probabilistic predictions of the thermal ratings. 

4) Finally, another copula model is selected to further formulate 

the JPDF of the multiperiod thermal ratings by treating the predicted 

PDFs of the thermal ratings in the predicted time periods as 

marginal PDFs (see Step ⑤). 

B. Single-period Probabilistic Predictions of the Thermal Ratings in 

Future Time Periods 

As mentioned above, the QR method is used to predict the 

probability distributions of the four meteorological elements (Ta, Vw, 

Qse, and φ) in each predicted time period. For any one of Ta, Vw and 

Qse, its τ quantile in the k
th

 time period (Q
k
(τ)) of the prediction time 

horizon can be expressed by (8) in accordance with the linear QR 

model: 

0 1 1 2 2( ) ( ) ( ) ( ) ( )k k k k k

n nQ x x x             , k=1…m, (8) 

where the xi (i=1…n) are the input parameters, namely, the historical 

data on the meteorological element; the β
k 

i (τ) (i=0…n; k=1…m) are 

the regression parameters for the τ quantile of the meteorological 

element in the k
th

 predicted time period; and m is the number of time 

periods over the prediction time horizon. In this paper, for each 

meteorological element, the historical 8-time-period data from the 

previous 2 hours are used as the input data for the QR model, and the 

length of the prediction time horizon is 1 hour, i.e., n=8 and m=4. 

The parameter vector β
k
(τ) can be estimated as follows: 
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where  ˆ kβ  is the vector of the estimated regression parameters for 

the prediction of Q
k
(τ), yi is the actual meteorological element 

sample, nsz is the sample size, and  k

   is a test function, which can 

be expressed as follows: 

 
              0 

1
( -1)        0








 
 

 
，k

a a
a k m

a a
.            (10) 

For the quantile prediction of the wind direction (φ) which is a 

circular variable, according to [18] and [28], before prediction, the 

wind direction can be decomposed along the easterly and northerly 

axes in the Cartesian coordinates into cos(φ) and sin(φ), respectively. 

Then, the QR model can be applied for the prediction of cos(φ) and 

sin(φ). The final wind direction prediction can then be obtained 

based on the prediction results of cos(φ) and sin(φ). Therefore, for 

wind direction prediction, the terms in (8) can be redefined as 

follows: 
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where  k

cQ   and  k

sQ   are the τ quantiles of cos(φ) and sin(φ), 

respectively, in the k
th

 time period and xci and xsi represent the 

historical data on cos(φ) and sin(φ), respectively. The parameter 

vectors  k

c   and  k

s   can be estimated as follows: 
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where  ˆ
c

k β  and  ˆ
s

kβ   are the vectors of the estimated regression 

parameters for the prediction of  k

cQ   and  k

sQ  , respectively, and 

yci and ysi are the actual cos(φ) and sin(φ) samples, respectively. 
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As shown in Fig. 7, 4×m QR models are trained to produce the 

single-period probabilistic predictions of the four meteorological 

elements in the predicted time periods. 

Historical n-time-period  

data for the 1st 

meteorological element

QR-1-1 QR-1-m

Historical n-time-period  

data for the 4th 

meteorological element

QR-4-1 QR-4-m

Quantiles of the four meteorological elements in the 

predicted time periods over the prediction horizon

Input 

data

Output 

data
 

Fig. 7 Quantile prediction for the meteorological elements in the predicted time 

periods. 

In Fig. 7, QR-i-k (i=1…4; k=1…m) represents the QR model for 

the i
th

 meteorological element in the k
th

 predicted time period. In this 

paper, the quantiles Q
k
(τ) (τ=0, 0.01, 0.02, …,1) are predicted 

separately. The cumulative distribution functions (CDFs) and PDFs 

of the meteorological elements in the predicted time periods can be 

obtained by fitting the predicted quantiles. 

A copula model is an effective tool for characterizing the 

correlations among multiple stochastic variables [29]. It can be used 

to formulate the JPDF of multiple stochastic variables. Suppose that 

there are z stochastic variables represented by r1, r2, …, rz. 

According to copula theory, the joint CDF of these stochastic 

variables, F(r1,…,rz), can be expressed as 

 1 1( , , ) ( ), , ( )z zF r r C F r F r ,                 (13) 

where C(·) is the copula distribution function and F(r1), …, F(rz) are 

the marginal CDFs of the stochastic variables. The JPDF of the 

stochastic variables, as shown in (14), can be derived by taking the 

derivative of (13) with respect to the stochastic variables on both 

sides: 

 1 1

1

( , , ) ( ), , ( ) ( )
z

z z i

i

f r r c F r F r f r


  ,         (14) 

where c(·) is the copula density function; f(r1,…,rz) is the JPDF of 

the stochastic variables r1, …, rz; and the f(ri) (i=1…z) are the 

marginal PDFs of the stochastic variables r1, …, rz. 

In the single-period predictions of the thermal ratings, for each 

predicted time period, the wind direction, wind speed, ambient 

temperature and solar radiation can be regarded as four stochastic 

variables, denoted by rw1, rw2, rw3, and rw4, respectively. Considering 

that the wind direction is a circular variable, a nonparametric 

Bernstein copula model is selected to predict the JPDFs of the four 

meteorological elements. According to [30] and [31], the quaternary 

empirical Bernstein copula density can be expressed as 
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where uwl=F(rwl) (l=1,2,3,4), h is the order of the polynomial, and 

1 2 3 4
ˆ

j j j jp  is given by 
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where I(·) is an indicator function that takes a value of 1 when its 

argument is true and takes a value of 0 otherwise. 

Based on the predicted PDFs of the four meteorological elements 

and the Bernstein copula density function, the JPDF of the four 

meteorological elements in each predicted time period can be 

obtained. Then, the PDFs of the thermal ratings in the predicted time 

periods can be estimated using meteorological data sampled from 

the JPDFs of the four meteorological elements. In this paper, 2000 

groups of meteorological data are sampled to simulate the PDF of 

the thermal rating in each predicted time period. 

C. JPDF Prediction for Multiperiod Thermal Ratings 

Once both the CDF and PDF of the thermal rating have been 

obtained for each predicted time period, as described in Subsection 

B, the thermal ratings in the four upcoming time periods over the 

prediction horizon can be regarded as four stochastic variables, rI1, 

rI2, rI3, and rI4. Since the thermal rating is a linear variable, for 

simplicity, a traditional parametric copula model can be used to 

predict the JPDF of the multiperiod thermal ratings. According to 

[31] and [32], there are multiple typical parametric copula models 

that can be used to characterize different correlation characteristics 

among stochastic variables, such as the Gaussian copula, the 

t-copula, the Clayton copula, the Frank copula and the Gumbel 

copula. Based on historical data on the stochastic variables, the 

Bayesian information criterion (BIC) can be used to select the 

optimal copula model [33]. The BIC for a copula model is computed 

as 

   2ln ln   m p sBIC L n n ,                        (19) 

where Lm is the maximum value of the likelihood function for the 

JPDF formulated via the copula model based on the given samples, 

np is the number of parameters of the copula model, and ns is the 

number of samples used for maximum likelihood estimation. In (19), 

the first term decreases with increasing Lm. Thus, a copula model 

with a smaller value of the first term is more suitable for formulating 

the JPDF of the stochastic variables. The second term reflects the 

complexity of the copula model. Its value increases with increasing 

model complexity. The second term functions as a penalty in the 

BIC calculation. Once the BICs for all candidate copula models 

have been calculated, the copula model with the minimum BIC will 

be selected as the optimal model because it is considered to provide 

the best tradeoff between model accuracy and complexity. 

To select the optimal parametric copula model for the formulation 

of the JPDF of the multiperiod thermal ratings, the BICs for five 

candidate parametric copula models were calculated. The 

calculation results are given in Table III. 
TABLE III 

BICS OF CANDIDATE COPULA MODELS FOR THE FORMULATION OF THE JPDF OF THE 

MULTIPERIOD THERMAL RATINGS 

Copula model BIC 

Gaussian copula -25642.60 

t-copula -30867.80 

Clayton copula -27952.97 

Frank copula -29646.07 

Gumbel copula -28670.50 

According to Table III, the t-copula model should be selected as 

the optimal parametric copula model for formulating the JPDF of 

the multiperiod thermal ratings. The quaternary t-copula density 

function is given by 
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, (20) 

where uIi=F(rIi) (i=1,2,3,4), λ
T
=[t

-1
(uI1), ..., t

-1
(uI4)], t

-1
(·) is the 

inverse CDF of the univariate t-distribution, Γ(·) represents the Γ 

distribution function, ρt is the 4
th

-order correlation coefficient matrix 
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of the 4-dimensional t-copula function, and b is the number of 

degrees of freedom. The parameters in ρt and the parameter b can be 

estimated using the maximum likelihood estimation method [34]. 

The likelihood function can be expressed as 

         1 4 1 2 3 4

1

, ( ( ), , ( ); , )t tρ ρ



sn

I d I d I d I d I d I d

d

L b c F r F r b f r f r f r f r , (21) 

where rI1d, rI2d, rI3d, and rI4d (d=1, 2, …, ns) denote the samples of the 

thermal ratings in the four time periods. Then, the parameters in ρt 

and the parameter b can be estimated as follows: 

    ˆˆ , argmax ln ,
t t
ρ ρb L b ,                      (22) 

where ˆ
t
ρ  is the estimated 4

th
-order correlation coefficient matrix of 

the 4-dimensional t-copula function and b̂  is the estimated number 

of degrees of freedom. After parameter estimation, the t-copula 

density function and the PDFs of the thermal ratings in the four 

predicted time periods can be substituted into Eq. (14). Thus, the 

JPDF of the multiperiod thermal ratings can be obtained. 

V.  CASE STUDIES 

In this case study, meteorological data were collected around an 

overhead conductor from July 1
st
, 2018, to August 14

th
, 2018 (45 

days), with a 15-minute resolution (4320 groups of meteorological 

data in total). The type of overhead conductor used was ACSR 300. 

Its STR is 650 A, which is calculated under conservative weather 

conditions of an air temperature of 35°C, a wind speed of 0.5 m/s 

perpendicular to the conductor and a solar radiation level of 800 

W/m
2
. The first 30 days (2880 groups) of meteorological data were 

used as the training dataset to estimate the parameters of the QR 

model and the selected copula model. The remaining 15 days of data 

were used as the test dataset to verify the effectiveness of the 

proposed probabilistic prediction method. In this case study, the 

prediction horizon was taken to be 1 hour (consisting of four time 

periods for prediction). Accordingly, we conducted predictions hour 

by hour for a total of 15 days (360 hours). 

A. Single-period Probabilistic Predictions of the Thermal Ratings in 

Future Time Periods 

As described in Section IV, the QR method is first used to predict 

the marginal PDFs of the four meteorological elements in the 

upcoming time periods over the prediction horizon. Then, a 

nonparametric Bernstein copula model is used to formulate the 

JPDFs of the meteorological elements in these predicted time 

periods to consider the meteorological correlations. These JPDFs, as 

expressed in Eq. (23), are formulated by substituting the marginal 

PDFs and the Bernstein copula density function into Eq. (14): 
 
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where r
k 

w1, …, r
k 

w4 are the stochastic variables representing the four 

meteorological elements in the k
th

 predicted time period; f
k
(r

k 

w1,…,r
k 

w4) 

(k=1…4) denotes the JPDF in the k
th

 predicted time period; the u
k 

wl

=F
k
(r

k 

wl ) (l=1…4) denote the marginal CDFs of the stochastic 

variables r
k 

w1, …, r
k 

w4 in the k
th

 predicted time period; and the f
k
(r

k 

wl) 

(l=1…4) are the marginal PDFs. According to [31] and [35], the 

order of the polynomial is h=8, which is chosen based on the quartic 

root of the sample size. 

Based on Eq. (23), the four meteorological elements in each time 

period over the prediction horizon are jointly sampled. The thermal 

ratings in the predicted time periods are then calculated using Eq. (7) 

based on these meteorological samples. By statistics, the quantiles 

and PDFs of the thermal ratings in the predicted time periods can 

then be obtained (hereafter called method I). In Fig. 8, the shaded 

area represents the area covered by the sampled thermal ratings 

(2,000 samples in each time step) drawn from the obtained PDFs. 

For comparison, single-period probabilistic predictions were also 

conducted using the predicted marginal PDFs of the four 

meteorological elements directly (hereafter called method II). The 

prediction process of method II is equivalent to the single-period 

probabilistic prediction process presented in Fig. 6 without Step ③. 

In addition, we attempted to produce probabilistic predictions using 

the historical thermal ratings (hereafter called method III). In 

method III, the historical thermal ratings are first calculated using 

the historical meteorological data. Corresponding QR models that 

take the historical thermal ratings as input are then trained to 

produce probabilistic predictions of the thermal ratings in the 

predicted time periods. The 0 quantiles and 1 quantiles predicted by 

methods II and III are also shown in Fig. 8 for comparison. 

 
Fig. 8 Actual thermal ratings, STR, and prediction results of methods I, II and III. 

It can be seen from Fig. 8 that all of the prediction intervals 

obtained using probabilistic prediction methods I, II and III fully 

cover the actual thermal rating curve. This indicates that all three 

methods achieve good performance in terms of reliability. However, 

the widths of the prediction intervals and the prediction accuracies 

of the three methods are different. Table IV shows the average 

widths of the prediction intervals (AWPIs), the mean absolute 

percentage errors (MAPEs) of the 0.5 quantiles of the prediction 

results relative to the actual thermal ratings, and the mean 

percentage deviations (MPDs) of the 0 quantiles relative to the STR. 

The MPD is calculated as follows: 

 
 0 

% 100
quantile STR

MPD Avg
STR

 
  

  .            

(24)

 

Table IV shows that for the first three methods, the AWPI and the 

MAPE of the 0.5 quantile produced by method I are the smallest, 

followed by those of methods III and II, respectively. The predicted 

0 quantile of the thermal rating is the most conservative choice for 

the system operator. Method I can produce the highest (least 

conservative) 0-quantile prediction result among the first three 

methods (approximately 116.94 A and 109.85 A higher on average 

than the prediction results of methods II and III, respectively), 

thereby guiding operators to make fuller use of overhead conductors. 

The above analyses illustrate that the integration of meteorological 

correlations into single-period probabilistic prediction is an 

effective way to improve the predictive performance. 
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B. Results of Multiperiod Joint Probabilistic Prediction 

The selected t-copula model and the predicted marginal PDFs of 

the thermal ratings in the predicted time periods are substituted into 

Eq. (14) to formulate the JPDF of the multiperiod thermal ratings, 

which can be expressed as 
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(25) 

where f(rI1,…,rI4) is the JPDF of the multiperiod thermal ratings, the 

f(rIi) (i=1…4) are the predicted marginal PDFs, and ρt and b can be 

estimated via maximum likelihood estimation based on the training 

dataset. After this estimation, we have b=4, and ρt is given as shown 

in (26): 

1 0.71 0.65 0.58
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TR1

TR2
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.           (26) 

It can be seen from (26) that over the 1-hour horizon, the 

correlation coefficient between the thermal ratings in two time 

periods decreases as the time span between them increases. 

Therefore, the estimation results for ρt reasonably reflect the degrees 

of correlation among the multiperiod thermal ratings. 

By using Eq. (25), the thermal ratings in the four upcoming time 

periods over the prediction horizon can be jointly sampled. 

Accordingly, we sampled the thermal ratings hour by hour for a total 

of 15 days. The prediction results obtained using this method, 

hereafter called method IV, are shown in Fig. 9. The curves of the 0 

and 1 quantiles predicted by method I are also shown in Fig. 9 for 

comparison. 

 
Fig. 9 Comparison of the multiperiod joint probabilistic prediction results and the 

single-period probabilistic prediction results from Subsection A. 
TABLE IV 

PARTIAL PREDICTION RESULTS OF PROBABILISTIC PREDICTION METHODS 

 
Probabilistic prediction method 

I II III IV 

AWPI 466.75 A 774.34 A 746.65 A 202.18 A 

MAPE of the 0.5 quantile 8.63% 18.68% 17.93% 5.65% 

MPD of the 0 quantile 51.44% 33.45% 34.54% 66.08% 

 

It can be seen from Fig. 9 that the prediction intervals obtained 

with the JPDP-MPTR method still fully cover the actual thermal 

rating curve while being narrower than those predicted by method I. 

According to Table IV, the JPDP-MPTR method (method IV) 

produces the lowest AWPI and the lowest MAPE of the 0.5 quantile 

as well as the highest 0 quantile over the prediction time horizon. 

These findings illustrate that considering the temporal correlations 

among multiperiod thermal ratings can lead to prediction results that 

are more consistent with the actual characteristics of the thermal 

rating variations, thus further improving the probabilistic prediction 

performance. 

C. Evaluation of the Probabilistic Predictions 

For a probabilistic prediction method, the reliability and 

sharpness of the prediction results can be used to evaluate its 

performance [33]. 

Reliability refers to the ability of the prediction intervals to cover 

the actual values of the predicted variable. Specifically, the 

prediction interval coverage probability (PICP) should be close to 

the nominal confidence level (1-α). The PICP at the j
th

 nominal 

confidence level (PICPj) can be defined as 
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where na is the number of actual thermal ratings and Ψi,j is the 

indicator for PICPj, expressed as 
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where rti is the i
th

 actual thermal rating and Ii, j is the i
th

 prediction 

interval at the j
th

 nominal confidence level. As mentioned above, the 

error between PICPj and 1-αj should be small, which means that the 

average coverage error (ACE), as defined in (29), should be as close 

to zero as possible. Therefore, the smaller the ACE is, the more 

reliable the prediction intervals. 
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In (29), N is the number of nominal confidence levels considered. 

In this case study, six different nominal confidence levels were 

selected (1-αj=100%, 98%, 96%, …, 90%). 

Sharpness refers to the degree of concentration of the probability 

distributions. The interval score can be employed to reflect the 

sharpness of each individual prediction interval. The interval score 

of the i
th

 prediction interval at the j
th

 nominal confidence level, Sci,j, 

can be expressed as 
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where Ui,j is the maximum value of the prediction interval and Li,j is 

the minimum value of the prediction interval. Based on Sci,j, the 

average score value (ASV) is defined as shown in (31) to reflect the 

overall sharpness of prediction intervals, where a smaller ASV 

indicates greater sharpness. 

,
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.                       (31) 

Based on (29) and (31), the ACEs and ASVs of the prediction 

results of the four probabilistic prediction methods were calculated, 

and the results are shown in Table V. 

The continuous ranked probability score (CRPS) is a popular 

prediction evaluation criterion that can comprehensively reflect the 

reliability and sharpness of probabilistic prediction results. The 

CRPS has previously been applied to evaluate the performance of 

the thermal rating probabilistic prediction method [20]. The CRPS 
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for the thermal rating probabilistic prediction results can be 

expressed as 

      
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,


 
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i ti i tiCRPS f r f x dx H r r dr ,             (32) 

where fi is the PDF of the thermal rating in the i
th

 predicted time 

period and H(·) is the Heaviside function, which is expressed as 

follows: 
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It can be seen from (32) that when the prediction interval covers 

the actual thermal rating, the smaller the prediction interval is, the 

smaller the value of the CRPS. Therefore, a lower CRPS indicates 

better performance of a probabilistic prediction method. The 15-day 

CRPS curves of the four probabilistic prediction methods used in 

this paper are shown in Fig. 10. The average CRPSs of the four 

prediction methods are also shown in Table V. 

 
Fig. 10 CRPSs of the four probabilistic prediction methods. 

TABLE V 
ACES, ASVS AND AVERAGE CRPSS OF THE FOUR PROBABILISTIC PREDICTION 

METHODS 

 
Probabilistic prediction method 

I II III IV 

ACE 0.026 0.055 0.051 0.018 

ASV 36.29 67.02 65.19 15.64 

Average CRPS 70.54 125.18 122.86 38.96 

 

As shown in Fig. 10 and Table V, method IV has the smallest 

ACE, ASV and average CRPS, followed by method I. This indicates 

that the proposed probabilistic prediction methods achieve better 

performance than the methods without considering meteorological 

correlations and temporal correlations among multiperiod thermal 

ratings. 

VI. CONCLUSION 

In this paper, a JPDP-MPTR method is proposed. The 

conclusions are as follows: 1) Correlations exist among 

meteorological elements and among multiperiod thermal ratings. 

The temporal correlations among the thermal ratings in 1 hour are 

strong. 2) The performance of single-period probabilistic 

predictions of thermal ratings can be improved by considering 

meteorological correlations. Compared with probabilistic 

predictions generated without considering meteorological 

correlations, the ACE and ASV are reduced by as much as 53% and 

46%, respectively, and the CRPS is reduced by 44% on average. 3) 

The proposed JPDP-MPTR method can yield further improved 

prediction results based on single-period probabilistic predictions 

by considering the temporal correlations among multiperiod thermal 

ratings. Compared with the results of single-period probabilistic 

predictions considering meteorological correlations, the ACE and 

ASV are further reduced by as much as 31% and 56%, respectively, 

and the CRPS is reduced by 45% on average. 

Building on the present work, further analysis and refinement can 

be carried out to facilitate the application of the proposed method. 

First, the prediction time horizon considered in this paper (1 hour) 

was selected on the basis of an autocorrelative analysis of thermal 

ratings calculated based on meteorological data collected in the 

vicinity of a specific overhead conductor in a specific year. For 

overhead conductors in different locations and seasons, the 

autocorrelations among the thermal ratings under different 

retardation time windows may be different due to the influence of 

topography and seasonality; in such a case, the prediction time 

horizon should be reselected based on an autocorrelative analysis of 

corresponding historical thermal ratings. Moreover, the classic QR 

and copula-based joint distribution modeling methods were used in 

the proposed JPDP-MPTR method. We cannot rule out the 

possibility that some other methods may perform better than the QR 

and copula-based methods, thus having the ability to replace the QR 

and copula-based methods used in this paper. Therefore, future 

studies are needed to further improve the proposed JPDP-MPTR 

method by exploring and integrating other well-performed 

probabilistic prediction and correlation modeling methods. Finally, 

inspired by the studies on transient-state thermal rating prediction 

[36], the correlations among the four meteorological elements and 

the temporal correlations of meteorological elements can also be 

integrated into the probabilistic predictions of transient-state 

thermal ratings in future work. 

REFERENCES 

[1] A. Safdarian, M. Z. Degefa, M. Fotuhi-Firuzabad and M. Lehtonen, "Benefits 

of real-time monitoring to distribution systems: dynamic thermal rating," in 
IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 2023-2031, July 2015. 

[2] S. Fan, G. He, X. Zhou and M. Cui, "Online Optimization for Networked 

Distributed Energy Resources with Time-Coupling Constraints," in IEEE 
Transactions on Smart Grid, doi: 10.1109/TSG.2020.3010866. 

[3] N. Viafora, Morozovska K, Kazmi, S H H, et al, "Day-ahead dispatch 

optimization with dynamic thermal rating of transformers and overhead lines," 
Electric Power Systems Research, vol. 171, pp. 194-208, 2019. 

[4] D. Douglass et al., "Real-Time overhead transmission-line monitoring for 

dynamic rating," in IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 
921-927, June 2016, doi: 10.1109/TPWRD.2014.2383915.  

[5] Bishnu P. Bhattarai, Jake P. Gentle, Timothy McJunkin, et.al, “Improvement of 

transmission line ampacity utilization by weather-based dynamic line rating,” 
IEEE Trans. Power Del., vol. 33, no. 4, pp. 1853–1863, Aug. 2018. 

[6] DAVISM W. A new thermal rating approach: the real-time thermal rating 

system for strategic overhead conductor transmission lines, part Ⅰ: General 

description and justification of the real-time thermal rating system[J]. IEEE 

Transactions on Power Apparatus and Systems, 1978, PAS-96(3):803-809. 
[7] D. M. Greenwood and P. C. Taylor, "Investigating the impact of real-time 

thermal ratings on power network reliability," in IEEE Transactions on Power 

Systems, vol. 29, no. 5, pp. 2460-2468, Sept. 2014. 
[8] D. M. Greenwood, G. L. Ingram and P. C. Taylor, "Applying wind simulations 

for planning and operation of real-time thermal ratings," in IEEE Transactions 

on Smart Grid, vol. 8, no. 2, pp. 537-547, March 2017. 
[9] J. Zhan, C. Y. Chung and E. Demeter, "Time series modeling for dynamic 

thermal rating of overhead lines," in IEEE Transactions on Power Systems, vol. 

32, no. 3, pp. 2172-2182, May 2017. 
[10] C. J. Wallnerström, Y. Huang, and L. Söder, “Impact from dynamic line rating 

on wind power integration,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 343–350, 

Jan. 2015. 
[11] R. Xiao, Y. Xiang, L. Wang and K. Xie, "Power system reliability evaluation 

incorporating dynamic thermal rating and network topology optimization," in 

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 28,2020 at 05:07:31 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3031833, IEEE
Transactions on Power Delivery

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9 

IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6000-6012, Nov. 
2018. 

[12] A. Bosisio, A. Berizzi, et al, "Improving DTR assessment by means of PCA 

applied to wind data," Electric Power Systems Research, vol. 172, pp. 193-200, 
2019. 

[13] Alvarez, D. L., da Silva, F. F., Mombello, E. E., Bak, C. L., & Rosero, J. A. 

(2018). Conductor temperature estimation and prediction at thermal transient 
state in dynamic line rating application. IEEE Transactions on Power Delivery, 

33(5), 2236–2245. 

[14] J. Jiang, Y. Liang, C. Chen, X. Zheng, C. Chuang and C. Wang, "On 
dispatching line ampacities of power grids using weather-based conductor 

temperature forecasts," in IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 

406-415, Jan. 2018. 
[15] S. Madadi, B. Mohammadi-ivatloo and S. Tohidi, "Dynamic line rating 

forecasting based on integrated factorized ornstein-uhlenbeck processes," IEEE 
Transactions on Power Delivery, pp. 1-1, 2019. 

[16] Alexander W. Abbouda, Kenneth R. Fentonb, Jacob P. Lehmera, et.al. 

Coupling computational fluid dynamics with the high resolution rapid refresh 
model for forecasting dynamic line ratings [J]. Electric Power Systems 

Research, 2019, 170(7):326-337. 

[17] T. Ringelb, P. Schäfer and A. Moser, "Probabilistic ampacity forecasting for 

overhead lines using weather forecast ensembles," Electrical Engineering, vol. 

95, (2), pp. 99-107, 2013. 

[18] F. Fan, K. Bell and D. Infield, "Probabilistic real-time thermal rating 
forecasting for overhead lines by conditionally heteroscedastic auto-regressive 

models," IEEE Transactions on Power Delivery, vol. 32, (4), pp. 1881-1890, 

2017. 
[19] J. L. Aznarte and N. Siebert, "Dynamic line rating using numerical weather 

predictions and machine learning: A case study," in IEEE Transactions on 

Power Delivery, vol. 32, no. 1, pp. 335-343, Feb. 2017. 
[20] Romain Dupin, George Kariniotakis, Andrea Michiorri, Overhead lines 

dynamic line rating based on probabilistic day-ahead forecasting and risk 

assessment, International Journal of Electrical Power & Energy Systems, 
Volume 110, 2019. 

[21] R. Dupin, A. Michiorri and G. Kariniotakis, "Optimal dynamic line rating 

forecasts selection based on ampacity probabilistic forecasting and network 
operators’ risk aversion," in IEEE Transactions on Power Systems, vol. 34, no. 

4, pp. 2836-2845, July 2019. 

[22] M. Matus et al., "Identification of critical spans for monitoring systems in 

dynamic thermal rating," in IEEE Transactions on Power Delivery, vol. 27, no. 

2, pp. 1002-1009, April 2012, doi: 10.1109/TPWRD.2012.2185254. 

[23] J. Teh and I. Cotton, "Critical span identification model for dynamic thermal 
rating system placement," in IET Generation, Transmission & Distribution, vol. 

9, no. 16, pp. 2644-2652, 3 12 2015, doi: 10.1049/iet-gtd.2015.0601. 

[24] "IEEE Standard for Calculating the Current-Temperature Relationship of Bare 
Overhead Conductors," IEEE Std 738-2012 (Revision of IEEE Std 738-2006 - 

Incorporates IEEE Std 738-2012 Cor 1-2013), pp. 1-72, 2013. 

[25] K. V. Mardia, "Linear-circular correlation coefficients and rhythmometry," 
Biometrika, vol. 63, (2), pp. 403-405, 1976 

[26] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd 

ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. 
[27] Deborah J. Rumsey. (2011) Statistics for dummies (2nd ed.). Hoboken, NJ. 

Wiley Publishing. 

[28] F. Fan, K. Bell and D. Infield, "Probabilistic weather forecasting for dynamic 
line rating studies," 2016 Power Systems Computation Conference (PSCC), 

Genoa, 2016, pp. 1-7, doi: 10.1109/PSCC.2016.7540854. 

[29] N. Zhang, C. Kang, C. Singh and Q. Xia, "Copula based dependent discrete 

convolution for power system uncertainty analysis," in IEEE Transactions on 

Power Systems, vol. 31, no. 6, pp. 5204-5205, Nov. 2016. 

[30] J. A. Carnicero, M. C. Ausín and M. P. Wiper, "Non-parametric copulas for 
circular–linear and circular–circular data: an application to wind directions," 

Stochastic Environmental Research and Risk Assessment, vol. 27, (8), pp. 

1991-2002, 2013. 
[31] T. Bouezmarni, J. V. K. Rombouts and A. Taamouti, "Asymptotic properties of 

the Bernstein density copula estimator for α -mixing data," Journal of 
Multivariate Analysis, vol. 101, (1), pp. 1-10, 2010. 

[32] Y. Wang, N. Zhang, C. Kang, M. Miao, R. Shi and Q. Xia, "An efficient 

approach to power system uncertainty analysis with high-dimensional 
dependencies," in IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 

2984-2994, May 2018. 

[33] M. Cui, V. Krishnan, B. Hodge and J. Zhang, "A Copula-based conditional 
probabilistic forecast model for wind power ramps," in IEEE Transactions on 

Smart Grid, vol. 10, no. 4, pp. 3870-3882, July 2019. 

[34] QIU Xiaoxia, LIU Cihua, WU Juan. The properties of maximum likelihood 
estimation of parameter on copula[J]. Mathematics in Economics, 2008, 

25(2):210-215. 

[35] A. Sancetta and S. Satchell, "The Bernstein copula and its applications to 
modeling and approximations of multivariate distributions," Econometric 

Theory, vol. 20, (3), pp. 535-562, 2004 

[36] F. Fan, K. Bell and D. Infield, "Transient-state real-time thermal rating 
forecasting for overhead lines by an enhanced analytical method," Electric 

Power Systems Research, vol. 167, pp. 213-221, 2019. 

 

 

Xu Jin was born in Jiangsu, China, in 1996. He is currently working toward the M.S. 

degree in electrical engineering at Shandong University, Jinan, China. His research 
interests include dynamic thermal rating estimation and forecast techniques. 

 

 

Mengxia Wang (S'10-M'16) received the Ph.D. degree in electrical engineering from 

Shandong University, Jinan, China, in 2011. From July 2011 to July 2013, he 
conducted postdoctoral research with the Department of Electrical Engineering, 

Tsinghua University, Beijing, China. He is currently a Lecturer at Shandong 

University. His research interests are power system security analysis, optimal 
operation, and control. 

 

 

Mingjian Cui (S'12-M'16-SM'18) received the B.S. and Ph.D. degrees from Wuhan 

University, Wuhan, Hubei, China, all in Electrical Engineering and Automation, in 

2010 and 2015, respectively. 
Currently, he is a Research Assistant Professor at Southern Methodist University, 

Dallas, Texas, USA. He was also a Visiting Scholar from 2014 to 2015 in the 

Transmission and Grid Integration Group at the National Renewable Energy 
Laboratory (NREL), Golden, Colorado, USA. His research interests include 

renewable energy, power system operation, power system cybersecurity, power 

system data analytics, and machine learning. He has authored/coauthored over 60 
peer-reviewed publications. Dr. Cui serves as an Associate Editor for journals of IET 

SMART GRID, IEEE ACCESS, IEEE POWER ENGINEERING LETTERS, and 

IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY (OAJPE). He is also 
the Best Reviewer of IEEE TRANS. SMART GRID for 2018 and IEEE TRANS. 

SUSTAINABLE ENERGY for 2019. 

 
 

Hua Sun received the M.S. degree from the School of Electrical Engineering at 

Shandong University, Jinan 250061, China, in 2005. She is currently a lecturer with 

Technician Department, Shandong Labour Vocational and Technical College, Jinan, 

250022, China. Her research interest includes power system stability and power 

system operation. 
 

 

Ming Yang (M'09-SM'18) received the B.Eng. and Ph.D. degrees in electrical 
engineering from Shandong University, Jinan, China, in 2003 and 2009, respectively. 

He was an exchange Ph.D. student with the Energy System Research Center. The 

University of Texas at Arlington, Arlington, TX, USA, from October 2006 to 
October 2007. He conducted Postdoctoral research with the School of Mathematics 

of Shandong University from July 2009 to 2011.From November 2015 to October 

2016, he was a Visiting Scholar with the Energy Systems Division, Argonne National 
Laboratory, Argonne, IL, USA. He is currently a Professor with the Shandong 

University and an Associate Editor of the IEEE Transactions on Industry 

Applications. His research interests include power system optimal operation and 
control. 

 

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 28,2020 at 05:07:31 UTC from IEEE Xplore.  Restrictions apply. 


